author | zautrix <zautrix> | 2004-10-19 20:16:14 (UTC) |
---|---|---|
committer | zautrix <zautrix> | 2004-10-19 20:16:14 (UTC) |
commit | eca49bb06a71980ef61d078904573f25890fc7f2 (patch) (side-by-side diff) | |
tree | c5338e3b12430248979a9ac2c1c7e6646ea9ecdf /pwmanager/libcrypt/cipher/rsa.c | |
parent | 53cc32b6e7b1f672bf91b2baf2df6c1e8baf3e0a (diff) | |
download | kdepimpi-eca49bb06a71980ef61d078904573f25890fc7f2.zip kdepimpi-eca49bb06a71980ef61d078904573f25890fc7f2.tar.gz kdepimpi-eca49bb06a71980ef61d078904573f25890fc7f2.tar.bz2 |
Initial revision
Diffstat (limited to 'pwmanager/libcrypt/cipher/rsa.c') (more/less context) (ignore whitespace changes)
-rw-r--r-- | pwmanager/libcrypt/cipher/rsa.c | 630 |
1 files changed, 630 insertions, 0 deletions
diff --git a/pwmanager/libcrypt/cipher/rsa.c b/pwmanager/libcrypt/cipher/rsa.c new file mode 100644 index 0000000..fa26622 --- a/dev/null +++ b/pwmanager/libcrypt/cipher/rsa.c @@ -0,0 +1,630 @@ +/* rsa.c - RSA function + * Copyright (C) 1997, 1998, 1999 by Werner Koch (dd9jn) + * Copyright (C) 2000, 2001, 2002, 2003 Free Software Foundation, Inc. + * + * This file is part of Libgcrypt. + * + * Libgcrypt is free software; you can redistribute it and/or modify + * it under the terms of the GNU Lesser General Public License as + * published by the Free Software Foundation; either version 2.1 of + * the License, or (at your option) any later version. + * + * Libgcrypt is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA + */ + +/* This code uses an algorithm protected by U.S. Patent #4,405,829 + which expired on September 20, 2000. The patent holder placed that + patent into the public domain on Sep 6th, 2000. +*/ + +#include <config.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include "g10lib.h" +#include "mpi.h" +#include "cipher.h" + + +typedef struct +{ + gcry_mpi_t n; /* modulus */ + gcry_mpi_t e; /* exponent */ +} RSA_public_key; + + +typedef struct +{ + gcry_mpi_t n; /* public modulus */ + gcry_mpi_t e; /* public exponent */ + gcry_mpi_t d; /* exponent */ + gcry_mpi_t p; /* prime p. */ + gcry_mpi_t q; /* prime q. */ + gcry_mpi_t u; /* inverse of p mod q. */ +} RSA_secret_key; + + +static void test_keys (RSA_secret_key *sk, unsigned nbits); +static void generate (RSA_secret_key *sk, + unsigned int nbits, unsigned long use_e); +static int check_secret_key (RSA_secret_key *sk); +static void public (gcry_mpi_t output, gcry_mpi_t input, RSA_public_key *skey); +static void secret (gcry_mpi_t output, gcry_mpi_t input, RSA_secret_key *skey); + + +static void +test_keys( RSA_secret_key *sk, unsigned nbits ) +{ + RSA_public_key pk; + gcry_mpi_t test = gcry_mpi_new ( nbits ); + gcry_mpi_t out1 = gcry_mpi_new ( nbits ); + gcry_mpi_t out2 = gcry_mpi_new ( nbits ); + + pk.n = sk->n; + pk.e = sk->e; + gcry_mpi_randomize( test, nbits, GCRY_WEAK_RANDOM ); + + public( out1, test, &pk ); + secret( out2, out1, sk ); + if( mpi_cmp( test, out2 ) ) + log_fatal("RSA operation: public, secret failed\n"); + secret( out1, test, sk ); + public( out2, out1, &pk ); + if( mpi_cmp( test, out2 ) ) + log_fatal("RSA operation: secret, public failed\n"); + gcry_mpi_release ( test ); + gcry_mpi_release ( out1 ); + gcry_mpi_release ( out2 ); +} + + +/* Callback used by the prime generation to test whether the exponent + is suitable. Returns 0 if the test has been passed. */ +static int +check_exponent (void *arg, gcry_mpi_t a) +{ + gcry_mpi_t e = arg; + gcry_mpi_t tmp; + int result; + + mpi_sub_ui (a, a, 1); + tmp = _gcry_mpi_alloc_like (a); + result = !gcry_mpi_gcd(tmp, e, a); /* GCD is not 1. */ + gcry_mpi_release (tmp); + mpi_add_ui (a, a, 1); + return result; +} + +/**************** + * Generate a key pair with a key of size NBITS. + * USE_E = 0 let Libcgrypt decide what exponent to use. + * = 1 request the use of a "secure" exponent; this is required by some + * specification to be 65537. + * > 2 Try starting at this value until a working exponent is found. + * Returns: 2 structures filled with all needed values + */ +static void +generate (RSA_secret_key *sk, unsigned int nbits, unsigned long use_e) +{ + gcry_mpi_t p, q; /* the two primes */ + gcry_mpi_t d; /* the private key */ + gcry_mpi_t u; + gcry_mpi_t t1, t2; + gcry_mpi_t n; /* the public key */ + gcry_mpi_t e; /* the exponent */ + gcry_mpi_t phi; /* helper: (p-1)(q-1) */ + gcry_mpi_t g; + gcry_mpi_t f; + + /* make sure that nbits is even so that we generate p, q of equal size */ + if ( (nbits&1) ) + nbits++; + + if (use_e == 1) /* Alias for a secure value. */ + use_e = 65537; /* as demanded by Spinx. */ + + /* Public exponent: + In general we use 41 as this is quite fast and more secure than the + commonly used 17. Benchmarking the RSA verify function + with a 1024 bit key yields (2001-11-08): + e=17 0.54 ms + e=41 0.75 ms + e=257 0.95 ms + e=65537 1.80 ms + */ + e = mpi_alloc( (32+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB ); + if (!use_e) + mpi_set_ui (e, 41); /* This is a reasonable secure and fast value */ + else + { + use_e |= 1; /* make sure this is odd */ + mpi_set_ui (e, use_e); + } + + n = gcry_mpi_new (nbits); + + p = q = NULL; + do + { + /* select two (very secret) primes */ + if (p) + gcry_mpi_release (p); + if (q) + gcry_mpi_release (q); + if (use_e) + { /* Do an extra test to ensure that the given exponent is + suitable. */ + p = _gcry_generate_secret_prime (nbits/2, check_exponent, e); + q = _gcry_generate_secret_prime (nbits/2, check_exponent, e); + } + else + { /* We check the exponent later. */ + p = _gcry_generate_secret_prime (nbits/2, NULL, NULL); + q = _gcry_generate_secret_prime (nbits/2, NULL, NULL); + } + if (mpi_cmp (p, q) > 0 ) /* p shall be smaller than q (for calc of u)*/ + mpi_swap(p,q); + /* calculate the modulus */ + mpi_mul( n, p, q ); + } + while ( mpi_get_nbits(n) != nbits ); + + /* calculate Euler totient: phi = (p-1)(q-1) */ + t1 = mpi_alloc_secure( mpi_get_nlimbs(p) ); + t2 = mpi_alloc_secure( mpi_get_nlimbs(p) ); + phi = gcry_mpi_snew ( nbits ); + g = gcry_mpi_snew ( nbits ); + f = gcry_mpi_snew ( nbits ); + mpi_sub_ui( t1, p, 1 ); + mpi_sub_ui( t2, q, 1 ); + mpi_mul( phi, t1, t2 ); + gcry_mpi_gcd(g, t1, t2); + mpi_fdiv_q(f, phi, g); + + while (!gcry_mpi_gcd(t1, e, phi)) /* (while gcd is not 1) */ + { + if (use_e) + BUG (); /* The prime generator already made sure that we + never can get to here. */ + mpi_add_ui (e, e, 2); + } + + /* calculate the secret key d = e^1 mod phi */ + d = gcry_mpi_snew ( nbits ); + mpi_invm(d, e, f ); + /* calculate the inverse of p and q (used for chinese remainder theorem)*/ + u = gcry_mpi_snew ( nbits ); + mpi_invm(u, p, q ); + + if( DBG_CIPHER ) + { + log_mpidump(" p= ", p ); + log_mpidump(" q= ", q ); + log_mpidump("phi= ", phi ); + log_mpidump(" g= ", g ); + log_mpidump(" f= ", f ); + log_mpidump(" n= ", n ); + log_mpidump(" e= ", e ); + log_mpidump(" d= ", d ); + log_mpidump(" u= ", u ); + } + + gcry_mpi_release (t1); + gcry_mpi_release (t2); + gcry_mpi_release (phi); + gcry_mpi_release (f); + gcry_mpi_release (g); + + sk->n = n; + sk->e = e; + sk->p = p; + sk->q = q; + sk->d = d; + sk->u = u; + + /* now we can test our keys (this should never fail!) */ + test_keys( sk, nbits - 64 ); +} + + +/**************** + * Test wether the secret key is valid. + * Returns: true if this is a valid key. + */ +static int +check_secret_key( RSA_secret_key *sk ) +{ + int rc; + gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(sk->p)*2 ); + + mpi_mul(temp, sk->p, sk->q ); + rc = mpi_cmp( temp, sk->n ); + mpi_free(temp); + return !rc; +} + + + +/**************** + * Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT. + * + * c = m^e mod n + * + * Where c is OUTPUT, m is INPUT and e,n are elements of PKEY. + */ +static void +public(gcry_mpi_t output, gcry_mpi_t input, RSA_public_key *pkey ) +{ + if( output == input ) /* powm doesn't like output and input the same */ + { + gcry_mpi_t x = mpi_alloc( mpi_get_nlimbs(input)*2 ); + mpi_powm( x, input, pkey->e, pkey->n ); + mpi_set(output, x); + mpi_free(x); + } + else + mpi_powm( output, input, pkey->e, pkey->n ); +} + +#if 0 +static void +stronger_key_check ( RSA_secret_key *skey ) +{ + gcry_mpi_t t = mpi_alloc_secure ( 0 ); + gcry_mpi_t t1 = mpi_alloc_secure ( 0 ); + gcry_mpi_t t2 = mpi_alloc_secure ( 0 ); + gcry_mpi_t phi = mpi_alloc_secure ( 0 ); + + /* check that n == p * q */ + mpi_mul( t, skey->p, skey->q); + if (mpi_cmp( t, skey->n) ) + log_info ( "RSA Oops: n != p * q\n" ); + + /* check that p is less than q */ + if( mpi_cmp( skey->p, skey->q ) > 0 ) + { + log_info ("RSA Oops: p >= q - fixed\n"); + _gcry_mpi_swap ( skey->p, skey->q); + } + + /* check that e divides neither p-1 nor q-1 */ + mpi_sub_ui(t, skey->p, 1 ); + mpi_fdiv_r(t, t, skey->e ); + if ( !mpi_cmp_ui( t, 0) ) + log_info ( "RSA Oops: e divides p-1\n" ); + mpi_sub_ui(t, skey->q, 1 ); + mpi_fdiv_r(t, t, skey->e ); + if ( !mpi_cmp_ui( t, 0) ) + log_info ( "RSA Oops: e divides q-1\n" ); + + /* check that d is correct */ + mpi_sub_ui( t1, skey->p, 1 ); + mpi_sub_ui( t2, skey->q, 1 ); + mpi_mul( phi, t1, t2 ); + gcry_mpi_gcd(t, t1, t2); + mpi_fdiv_q(t, phi, t); + mpi_invm(t, skey->e, t ); + if ( mpi_cmp(t, skey->d ) ) + { + log_info ( "RSA Oops: d is wrong - fixed\n"); + mpi_set (skey->d, t); + _gcry_log_mpidump (" fixed d", skey->d); + } + + /* check for correctness of u */ + mpi_invm(t, skey->p, skey->q ); + if ( mpi_cmp(t, skey->u ) ) + { + log_info ( "RSA Oops: u is wrong - fixed\n"); + mpi_set (skey->u, t); + _gcry_log_mpidump (" fixed u", skey->u); + } + + log_info ( "RSA secret key check finished\n"); + + mpi_free (t); + mpi_free (t1); + mpi_free (t2); + mpi_free (phi); +} +#endif + + + +/**************** + * Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT. + * + * m = c^d mod n + * + * Or faster: + * + * m1 = c ^ (d mod (p-1)) mod p + * m2 = c ^ (d mod (q-1)) mod q + * h = u * (m2 - m1) mod q + * m = m1 + h * p + * + * Where m is OUTPUT, c is INPUT and d,n,p,q,u are elements of SKEY. + */ +static void +secret(gcry_mpi_t output, gcry_mpi_t input, RSA_secret_key *skey ) +{ + if (!skey->p && !skey->q && !skey->u) + { + mpi_powm (output, input, skey->d, skey->n); + } + else + { + gcry_mpi_t m1 = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 ); + gcry_mpi_t m2 = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 ); + gcry_mpi_t h = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 ); + + /* m1 = c ^ (d mod (p-1)) mod p */ + mpi_sub_ui( h, skey->p, 1 ); + mpi_fdiv_r( h, skey->d, h ); + mpi_powm( m1, input, h, skey->p ); + /* m2 = c ^ (d mod (q-1)) mod q */ + mpi_sub_ui( h, skey->q, 1 ); + mpi_fdiv_r( h, skey->d, h ); + mpi_powm( m2, input, h, skey->q ); + /* h = u * ( m2 - m1 ) mod q */ + mpi_sub( h, m2, m1 ); + if ( mpi_is_neg( h ) ) + mpi_add ( h, h, skey->q ); + mpi_mulm( h, skey->u, h, skey->q ); + /* m = m2 + h * p */ + mpi_mul ( h, h, skey->p ); + mpi_add ( output, m1, h ); + + mpi_free ( h ); + mpi_free ( m1 ); + mpi_free ( m2 ); + } +} + + + +/* Perform RSA blinding. */ +static gcry_mpi_t +rsa_blind (gcry_mpi_t x, gcry_mpi_t r, gcry_mpi_t e, gcry_mpi_t n) +{ + /* A helper. */ + gcry_mpi_t a; + + /* Result. */ + gcry_mpi_t y; + + a = gcry_mpi_snew (gcry_mpi_get_nbits (n)); + y = gcry_mpi_snew (gcry_mpi_get_nbits (n)); + + /* Now we calculate: y = (x * r^e) mod n, where r is the random + number, e is the public exponent, x is the non-blinded data and n + is the RSA modulus. */ + gcry_mpi_powm (a, r, e, n); + gcry_mpi_mulm (y, a, x, n); + + gcry_mpi_release (a); + + return y; +} + +/* Undo RSA blinding. */ +static gcry_mpi_t +rsa_unblind (gcry_mpi_t x, gcry_mpi_t ri, gcry_mpi_t n) +{ + gcry_mpi_t y; + + y = gcry_mpi_snew (gcry_mpi_get_nbits (n)); + + /* Here we calculate: y = (x * r^-1) mod n, where x is the blinded + decrypted data, ri is the modular multiplicative inverse of r and + n is the RSA modulus. */ + + gcry_mpi_mulm (y, ri, x, n); + + return y; +} + +/********************************************* + ************** interface ****************** + *********************************************/ + +gcry_err_code_t +_gcry_rsa_generate (int algo, unsigned int nbits, unsigned long use_e, + gcry_mpi_t *skey, gcry_mpi_t **retfactors) +{ + RSA_secret_key sk; + + generate (&sk, nbits, use_e); + skey[0] = sk.n; + skey[1] = sk.e; + skey[2] = sk.d; + skey[3] = sk.p; + skey[4] = sk.q; + skey[5] = sk.u; + + /* make an empty list of factors */ + *retfactors = gcry_xcalloc( 1, sizeof **retfactors ); + + return GPG_ERR_NO_ERROR; +} + + +gcry_err_code_t +_gcry_rsa_check_secret_key( int algo, gcry_mpi_t *skey ) +{ + gcry_err_code_t err = GPG_ERR_NO_ERROR; + RSA_secret_key sk; + + sk.n = skey[0]; + sk.e = skey[1]; + sk.d = skey[2]; + sk.p = skey[3]; + sk.q = skey[4]; + sk.u = skey[5]; + + if (! check_secret_key (&sk)) + err = GPG_ERR_PUBKEY_ALGO; + + return err; +} + + +gcry_err_code_t +_gcry_rsa_encrypt (int algo, gcry_mpi_t *resarr, gcry_mpi_t data, + gcry_mpi_t *pkey, int flags) +{ + RSA_public_key pk; + + pk.n = pkey[0]; + pk.e = pkey[1]; + resarr[0] = mpi_alloc (mpi_get_nlimbs (pk.n)); + public (resarr[0], data, &pk); + + return GPG_ERR_NO_ERROR; +} + +gcry_err_code_t +_gcry_rsa_decrypt (int algo, gcry_mpi_t *result, gcry_mpi_t *data, + gcry_mpi_t *skey, int flags) +{ + RSA_secret_key sk; + gcry_mpi_t r = MPI_NULL; /* Random number needed for blinding. */ + gcry_mpi_t ri = MPI_NULL; /* Modular multiplicative inverse of + r. */ + gcry_mpi_t x = MPI_NULL; /* Data to decrypt. */ + gcry_mpi_t y; /* Result. */ + + /* Extract private key. */ + sk.n = skey[0]; + sk.e = skey[1]; + sk.d = skey[2]; + sk.p = skey[3]; + sk.q = skey[4]; + sk.u = skey[5]; + + y = gcry_mpi_snew (gcry_mpi_get_nbits (sk.n)); + + if (! (flags & PUBKEY_FLAG_NO_BLINDING)) + { + /* Initialize blinding. */ + + /* First, we need a random number r between 0 and n - 1, which + is relatively prime to n (i.e. it is neither p nor q). */ + r = gcry_mpi_snew (gcry_mpi_get_nbits (sk.n)); + ri = gcry_mpi_snew (gcry_mpi_get_nbits (sk.n)); + + gcry_mpi_randomize (r, gcry_mpi_get_nbits (sk.n), + GCRY_STRONG_RANDOM); + gcry_mpi_mod (r, r, sk.n); + + /* Actually it should be okay to skip the check for equality + with either p or q here. */ + + /* Calculate inverse of r. */ + if (! gcry_mpi_invm (ri, r, sk.n)) + BUG (); + } + + if (! (flags & PUBKEY_FLAG_NO_BLINDING)) + x = rsa_blind (data[0], r, sk.e, sk.n); + else + x = data[0]; + + /* Do the encryption. */ + secret (y, x, &sk); + + if (! (flags & PUBKEY_FLAG_NO_BLINDING)) + { + /* Undo blinding. */ + gcry_mpi_t a = gcry_mpi_copy (y); + + gcry_mpi_release (y); + y = rsa_unblind (a, ri, sk.n); + } + + if (! (flags & PUBKEY_FLAG_NO_BLINDING)) + { + /* Deallocate resources needed for blinding. */ + gcry_mpi_release (x); + gcry_mpi_release (r); + gcry_mpi_release (ri); + } + + /* Copy out result. */ + *result = y; + + return GPG_ERR_NO_ERROR; +} + +gcry_err_code_t +_gcry_rsa_sign (int algo, gcry_mpi_t *resarr, gcry_mpi_t data, gcry_mpi_t *skey) +{ + RSA_secret_key sk; + + sk.n = skey[0]; + sk.e = skey[1]; + sk.d = skey[2]; + sk.p = skey[3]; + sk.q = skey[4]; + sk.u = skey[5]; + resarr[0] = mpi_alloc( mpi_get_nlimbs (sk.n)); + secret (resarr[0], data, &sk); + + return GPG_ERR_NO_ERROR; +} + +gcry_err_code_t +_gcry_rsa_verify (int algo, gcry_mpi_t hash, gcry_mpi_t *data, gcry_mpi_t *pkey, + int (*cmp) (void *opaque, gcry_mpi_t tmp), + void *opaquev) +{ + RSA_public_key pk; + gcry_mpi_t result; + gcry_err_code_t rc; + + pk.n = pkey[0]; + pk.e = pkey[1]; + result = gcry_mpi_new ( 160 ); + public( result, data[0], &pk ); + /*rc = (*cmp)( opaquev, result );*/ + rc = mpi_cmp (result, hash) ? GPG_ERR_BAD_SIGNATURE : GPG_ERR_NO_ERROR; + gcry_mpi_release (result); + + return rc; +} + + +unsigned int +_gcry_rsa_get_nbits (int algo, gcry_mpi_t *pkey) +{ + return mpi_get_nbits (pkey[0]); +} + +static char *rsa_names[] = + { + "rsa", + "openpgp-rsa", + "oid.1.2.840.113549.1.1.1", + NULL, + }; + +gcry_pk_spec_t _gcry_pubkey_spec_rsa = + { + "RSA", rsa_names, + "ne", "nedpqu", "a", "s", "n", + GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR, + _gcry_rsa_generate, + _gcry_rsa_check_secret_key, + _gcry_rsa_encrypt, + _gcry_rsa_decrypt, + _gcry_rsa_sign, + _gcry_rsa_verify, + _gcry_rsa_get_nbits, + }; |