summaryrefslogtreecommitdiffabout
path: root/pwmanager/libcrypt/cipher/rsa.c
authorzautrix <zautrix>2004-10-19 20:16:14 (UTC)
committer zautrix <zautrix>2004-10-19 20:16:14 (UTC)
commiteca49bb06a71980ef61d078904573f25890fc7f2 (patch) (side-by-side diff)
treec5338e3b12430248979a9ac2c1c7e6646ea9ecdf /pwmanager/libcrypt/cipher/rsa.c
parent53cc32b6e7b1f672bf91b2baf2df6c1e8baf3e0a (diff)
downloadkdepimpi-eca49bb06a71980ef61d078904573f25890fc7f2.zip
kdepimpi-eca49bb06a71980ef61d078904573f25890fc7f2.tar.gz
kdepimpi-eca49bb06a71980ef61d078904573f25890fc7f2.tar.bz2
Initial revision
Diffstat (limited to 'pwmanager/libcrypt/cipher/rsa.c') (more/less context) (ignore whitespace changes)
-rw-r--r--pwmanager/libcrypt/cipher/rsa.c630
1 files changed, 630 insertions, 0 deletions
diff --git a/pwmanager/libcrypt/cipher/rsa.c b/pwmanager/libcrypt/cipher/rsa.c
new file mode 100644
index 0000000..fa26622
--- a/dev/null
+++ b/pwmanager/libcrypt/cipher/rsa.c
@@ -0,0 +1,630 @@
+/* rsa.c - RSA function
+ * Copyright (C) 1997, 1998, 1999 by Werner Koch (dd9jn)
+ * Copyright (C) 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
+ *
+ * This file is part of Libgcrypt.
+ *
+ * Libgcrypt is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as
+ * published by the Free Software Foundation; either version 2.1 of
+ * the License, or (at your option) any later version.
+ *
+ * Libgcrypt is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
+ */
+
+/* This code uses an algorithm protected by U.S. Patent #4,405,829
+ which expired on September 20, 2000. The patent holder placed that
+ patent into the public domain on Sep 6th, 2000.
+*/
+
+#include <config.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include "g10lib.h"
+#include "mpi.h"
+#include "cipher.h"
+
+
+typedef struct
+{
+ gcry_mpi_t n; /* modulus */
+ gcry_mpi_t e; /* exponent */
+} RSA_public_key;
+
+
+typedef struct
+{
+ gcry_mpi_t n; /* public modulus */
+ gcry_mpi_t e; /* public exponent */
+ gcry_mpi_t d; /* exponent */
+ gcry_mpi_t p; /* prime p. */
+ gcry_mpi_t q; /* prime q. */
+ gcry_mpi_t u; /* inverse of p mod q. */
+} RSA_secret_key;
+
+
+static void test_keys (RSA_secret_key *sk, unsigned nbits);
+static void generate (RSA_secret_key *sk,
+ unsigned int nbits, unsigned long use_e);
+static int check_secret_key (RSA_secret_key *sk);
+static void public (gcry_mpi_t output, gcry_mpi_t input, RSA_public_key *skey);
+static void secret (gcry_mpi_t output, gcry_mpi_t input, RSA_secret_key *skey);
+
+
+static void
+test_keys( RSA_secret_key *sk, unsigned nbits )
+{
+ RSA_public_key pk;
+ gcry_mpi_t test = gcry_mpi_new ( nbits );
+ gcry_mpi_t out1 = gcry_mpi_new ( nbits );
+ gcry_mpi_t out2 = gcry_mpi_new ( nbits );
+
+ pk.n = sk->n;
+ pk.e = sk->e;
+ gcry_mpi_randomize( test, nbits, GCRY_WEAK_RANDOM );
+
+ public( out1, test, &pk );
+ secret( out2, out1, sk );
+ if( mpi_cmp( test, out2 ) )
+ log_fatal("RSA operation: public, secret failed\n");
+ secret( out1, test, sk );
+ public( out2, out1, &pk );
+ if( mpi_cmp( test, out2 ) )
+ log_fatal("RSA operation: secret, public failed\n");
+ gcry_mpi_release ( test );
+ gcry_mpi_release ( out1 );
+ gcry_mpi_release ( out2 );
+}
+
+
+/* Callback used by the prime generation to test whether the exponent
+ is suitable. Returns 0 if the test has been passed. */
+static int
+check_exponent (void *arg, gcry_mpi_t a)
+{
+ gcry_mpi_t e = arg;
+ gcry_mpi_t tmp;
+ int result;
+
+ mpi_sub_ui (a, a, 1);
+ tmp = _gcry_mpi_alloc_like (a);
+ result = !gcry_mpi_gcd(tmp, e, a); /* GCD is not 1. */
+ gcry_mpi_release (tmp);
+ mpi_add_ui (a, a, 1);
+ return result;
+}
+
+/****************
+ * Generate a key pair with a key of size NBITS.
+ * USE_E = 0 let Libcgrypt decide what exponent to use.
+ * = 1 request the use of a "secure" exponent; this is required by some
+ * specification to be 65537.
+ * > 2 Try starting at this value until a working exponent is found.
+ * Returns: 2 structures filled with all needed values
+ */
+static void
+generate (RSA_secret_key *sk, unsigned int nbits, unsigned long use_e)
+{
+ gcry_mpi_t p, q; /* the two primes */
+ gcry_mpi_t d; /* the private key */
+ gcry_mpi_t u;
+ gcry_mpi_t t1, t2;
+ gcry_mpi_t n; /* the public key */
+ gcry_mpi_t e; /* the exponent */
+ gcry_mpi_t phi; /* helper: (p-1)(q-1) */
+ gcry_mpi_t g;
+ gcry_mpi_t f;
+
+ /* make sure that nbits is even so that we generate p, q of equal size */
+ if ( (nbits&1) )
+ nbits++;
+
+ if (use_e == 1) /* Alias for a secure value. */
+ use_e = 65537; /* as demanded by Spinx. */
+
+ /* Public exponent:
+ In general we use 41 as this is quite fast and more secure than the
+ commonly used 17. Benchmarking the RSA verify function
+ with a 1024 bit key yields (2001-11-08):
+ e=17 0.54 ms
+ e=41 0.75 ms
+ e=257 0.95 ms
+ e=65537 1.80 ms
+ */
+ e = mpi_alloc( (32+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
+ if (!use_e)
+ mpi_set_ui (e, 41); /* This is a reasonable secure and fast value */
+ else
+ {
+ use_e |= 1; /* make sure this is odd */
+ mpi_set_ui (e, use_e);
+ }
+
+ n = gcry_mpi_new (nbits);
+
+ p = q = NULL;
+ do
+ {
+ /* select two (very secret) primes */
+ if (p)
+ gcry_mpi_release (p);
+ if (q)
+ gcry_mpi_release (q);
+ if (use_e)
+ { /* Do an extra test to ensure that the given exponent is
+ suitable. */
+ p = _gcry_generate_secret_prime (nbits/2, check_exponent, e);
+ q = _gcry_generate_secret_prime (nbits/2, check_exponent, e);
+ }
+ else
+ { /* We check the exponent later. */
+ p = _gcry_generate_secret_prime (nbits/2, NULL, NULL);
+ q = _gcry_generate_secret_prime (nbits/2, NULL, NULL);
+ }
+ if (mpi_cmp (p, q) > 0 ) /* p shall be smaller than q (for calc of u)*/
+ mpi_swap(p,q);
+ /* calculate the modulus */
+ mpi_mul( n, p, q );
+ }
+ while ( mpi_get_nbits(n) != nbits );
+
+ /* calculate Euler totient: phi = (p-1)(q-1) */
+ t1 = mpi_alloc_secure( mpi_get_nlimbs(p) );
+ t2 = mpi_alloc_secure( mpi_get_nlimbs(p) );
+ phi = gcry_mpi_snew ( nbits );
+ g = gcry_mpi_snew ( nbits );
+ f = gcry_mpi_snew ( nbits );
+ mpi_sub_ui( t1, p, 1 );
+ mpi_sub_ui( t2, q, 1 );
+ mpi_mul( phi, t1, t2 );
+ gcry_mpi_gcd(g, t1, t2);
+ mpi_fdiv_q(f, phi, g);
+
+ while (!gcry_mpi_gcd(t1, e, phi)) /* (while gcd is not 1) */
+ {
+ if (use_e)
+ BUG (); /* The prime generator already made sure that we
+ never can get to here. */
+ mpi_add_ui (e, e, 2);
+ }
+
+ /* calculate the secret key d = e^1 mod phi */
+ d = gcry_mpi_snew ( nbits );
+ mpi_invm(d, e, f );
+ /* calculate the inverse of p and q (used for chinese remainder theorem)*/
+ u = gcry_mpi_snew ( nbits );
+ mpi_invm(u, p, q );
+
+ if( DBG_CIPHER )
+ {
+ log_mpidump(" p= ", p );
+ log_mpidump(" q= ", q );
+ log_mpidump("phi= ", phi );
+ log_mpidump(" g= ", g );
+ log_mpidump(" f= ", f );
+ log_mpidump(" n= ", n );
+ log_mpidump(" e= ", e );
+ log_mpidump(" d= ", d );
+ log_mpidump(" u= ", u );
+ }
+
+ gcry_mpi_release (t1);
+ gcry_mpi_release (t2);
+ gcry_mpi_release (phi);
+ gcry_mpi_release (f);
+ gcry_mpi_release (g);
+
+ sk->n = n;
+ sk->e = e;
+ sk->p = p;
+ sk->q = q;
+ sk->d = d;
+ sk->u = u;
+
+ /* now we can test our keys (this should never fail!) */
+ test_keys( sk, nbits - 64 );
+}
+
+
+/****************
+ * Test wether the secret key is valid.
+ * Returns: true if this is a valid key.
+ */
+static int
+check_secret_key( RSA_secret_key *sk )
+{
+ int rc;
+ gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(sk->p)*2 );
+
+ mpi_mul(temp, sk->p, sk->q );
+ rc = mpi_cmp( temp, sk->n );
+ mpi_free(temp);
+ return !rc;
+}
+
+
+
+/****************
+ * Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT.
+ *
+ * c = m^e mod n
+ *
+ * Where c is OUTPUT, m is INPUT and e,n are elements of PKEY.
+ */
+static void
+public(gcry_mpi_t output, gcry_mpi_t input, RSA_public_key *pkey )
+{
+ if( output == input ) /* powm doesn't like output and input the same */
+ {
+ gcry_mpi_t x = mpi_alloc( mpi_get_nlimbs(input)*2 );
+ mpi_powm( x, input, pkey->e, pkey->n );
+ mpi_set(output, x);
+ mpi_free(x);
+ }
+ else
+ mpi_powm( output, input, pkey->e, pkey->n );
+}
+
+#if 0
+static void
+stronger_key_check ( RSA_secret_key *skey )
+{
+ gcry_mpi_t t = mpi_alloc_secure ( 0 );
+ gcry_mpi_t t1 = mpi_alloc_secure ( 0 );
+ gcry_mpi_t t2 = mpi_alloc_secure ( 0 );
+ gcry_mpi_t phi = mpi_alloc_secure ( 0 );
+
+ /* check that n == p * q */
+ mpi_mul( t, skey->p, skey->q);
+ if (mpi_cmp( t, skey->n) )
+ log_info ( "RSA Oops: n != p * q\n" );
+
+ /* check that p is less than q */
+ if( mpi_cmp( skey->p, skey->q ) > 0 )
+ {
+ log_info ("RSA Oops: p >= q - fixed\n");
+ _gcry_mpi_swap ( skey->p, skey->q);
+ }
+
+ /* check that e divides neither p-1 nor q-1 */
+ mpi_sub_ui(t, skey->p, 1 );
+ mpi_fdiv_r(t, t, skey->e );
+ if ( !mpi_cmp_ui( t, 0) )
+ log_info ( "RSA Oops: e divides p-1\n" );
+ mpi_sub_ui(t, skey->q, 1 );
+ mpi_fdiv_r(t, t, skey->e );
+ if ( !mpi_cmp_ui( t, 0) )
+ log_info ( "RSA Oops: e divides q-1\n" );
+
+ /* check that d is correct */
+ mpi_sub_ui( t1, skey->p, 1 );
+ mpi_sub_ui( t2, skey->q, 1 );
+ mpi_mul( phi, t1, t2 );
+ gcry_mpi_gcd(t, t1, t2);
+ mpi_fdiv_q(t, phi, t);
+ mpi_invm(t, skey->e, t );
+ if ( mpi_cmp(t, skey->d ) )
+ {
+ log_info ( "RSA Oops: d is wrong - fixed\n");
+ mpi_set (skey->d, t);
+ _gcry_log_mpidump (" fixed d", skey->d);
+ }
+
+ /* check for correctness of u */
+ mpi_invm(t, skey->p, skey->q );
+ if ( mpi_cmp(t, skey->u ) )
+ {
+ log_info ( "RSA Oops: u is wrong - fixed\n");
+ mpi_set (skey->u, t);
+ _gcry_log_mpidump (" fixed u", skey->u);
+ }
+
+ log_info ( "RSA secret key check finished\n");
+
+ mpi_free (t);
+ mpi_free (t1);
+ mpi_free (t2);
+ mpi_free (phi);
+}
+#endif
+
+
+
+/****************
+ * Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT.
+ *
+ * m = c^d mod n
+ *
+ * Or faster:
+ *
+ * m1 = c ^ (d mod (p-1)) mod p
+ * m2 = c ^ (d mod (q-1)) mod q
+ * h = u * (m2 - m1) mod q
+ * m = m1 + h * p
+ *
+ * Where m is OUTPUT, c is INPUT and d,n,p,q,u are elements of SKEY.
+ */
+static void
+secret(gcry_mpi_t output, gcry_mpi_t input, RSA_secret_key *skey )
+{
+ if (!skey->p && !skey->q && !skey->u)
+ {
+ mpi_powm (output, input, skey->d, skey->n);
+ }
+ else
+ {
+ gcry_mpi_t m1 = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );
+ gcry_mpi_t m2 = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );
+ gcry_mpi_t h = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );
+
+ /* m1 = c ^ (d mod (p-1)) mod p */
+ mpi_sub_ui( h, skey->p, 1 );
+ mpi_fdiv_r( h, skey->d, h );
+ mpi_powm( m1, input, h, skey->p );
+ /* m2 = c ^ (d mod (q-1)) mod q */
+ mpi_sub_ui( h, skey->q, 1 );
+ mpi_fdiv_r( h, skey->d, h );
+ mpi_powm( m2, input, h, skey->q );
+ /* h = u * ( m2 - m1 ) mod q */
+ mpi_sub( h, m2, m1 );
+ if ( mpi_is_neg( h ) )
+ mpi_add ( h, h, skey->q );
+ mpi_mulm( h, skey->u, h, skey->q );
+ /* m = m2 + h * p */
+ mpi_mul ( h, h, skey->p );
+ mpi_add ( output, m1, h );
+
+ mpi_free ( h );
+ mpi_free ( m1 );
+ mpi_free ( m2 );
+ }
+}
+
+
+
+/* Perform RSA blinding. */
+static gcry_mpi_t
+rsa_blind (gcry_mpi_t x, gcry_mpi_t r, gcry_mpi_t e, gcry_mpi_t n)
+{
+ /* A helper. */
+ gcry_mpi_t a;
+
+ /* Result. */
+ gcry_mpi_t y;
+
+ a = gcry_mpi_snew (gcry_mpi_get_nbits (n));
+ y = gcry_mpi_snew (gcry_mpi_get_nbits (n));
+
+ /* Now we calculate: y = (x * r^e) mod n, where r is the random
+ number, e is the public exponent, x is the non-blinded data and n
+ is the RSA modulus. */
+ gcry_mpi_powm (a, r, e, n);
+ gcry_mpi_mulm (y, a, x, n);
+
+ gcry_mpi_release (a);
+
+ return y;
+}
+
+/* Undo RSA blinding. */
+static gcry_mpi_t
+rsa_unblind (gcry_mpi_t x, gcry_mpi_t ri, gcry_mpi_t n)
+{
+ gcry_mpi_t y;
+
+ y = gcry_mpi_snew (gcry_mpi_get_nbits (n));
+
+ /* Here we calculate: y = (x * r^-1) mod n, where x is the blinded
+ decrypted data, ri is the modular multiplicative inverse of r and
+ n is the RSA modulus. */
+
+ gcry_mpi_mulm (y, ri, x, n);
+
+ return y;
+}
+
+/*********************************************
+ ************** interface ******************
+ *********************************************/
+
+gcry_err_code_t
+_gcry_rsa_generate (int algo, unsigned int nbits, unsigned long use_e,
+ gcry_mpi_t *skey, gcry_mpi_t **retfactors)
+{
+ RSA_secret_key sk;
+
+ generate (&sk, nbits, use_e);
+ skey[0] = sk.n;
+ skey[1] = sk.e;
+ skey[2] = sk.d;
+ skey[3] = sk.p;
+ skey[4] = sk.q;
+ skey[5] = sk.u;
+
+ /* make an empty list of factors */
+ *retfactors = gcry_xcalloc( 1, sizeof **retfactors );
+
+ return GPG_ERR_NO_ERROR;
+}
+
+
+gcry_err_code_t
+_gcry_rsa_check_secret_key( int algo, gcry_mpi_t *skey )
+{
+ gcry_err_code_t err = GPG_ERR_NO_ERROR;
+ RSA_secret_key sk;
+
+ sk.n = skey[0];
+ sk.e = skey[1];
+ sk.d = skey[2];
+ sk.p = skey[3];
+ sk.q = skey[4];
+ sk.u = skey[5];
+
+ if (! check_secret_key (&sk))
+ err = GPG_ERR_PUBKEY_ALGO;
+
+ return err;
+}
+
+
+gcry_err_code_t
+_gcry_rsa_encrypt (int algo, gcry_mpi_t *resarr, gcry_mpi_t data,
+ gcry_mpi_t *pkey, int flags)
+{
+ RSA_public_key pk;
+
+ pk.n = pkey[0];
+ pk.e = pkey[1];
+ resarr[0] = mpi_alloc (mpi_get_nlimbs (pk.n));
+ public (resarr[0], data, &pk);
+
+ return GPG_ERR_NO_ERROR;
+}
+
+gcry_err_code_t
+_gcry_rsa_decrypt (int algo, gcry_mpi_t *result, gcry_mpi_t *data,
+ gcry_mpi_t *skey, int flags)
+{
+ RSA_secret_key sk;
+ gcry_mpi_t r = MPI_NULL; /* Random number needed for blinding. */
+ gcry_mpi_t ri = MPI_NULL; /* Modular multiplicative inverse of
+ r. */
+ gcry_mpi_t x = MPI_NULL; /* Data to decrypt. */
+ gcry_mpi_t y; /* Result. */
+
+ /* Extract private key. */
+ sk.n = skey[0];
+ sk.e = skey[1];
+ sk.d = skey[2];
+ sk.p = skey[3];
+ sk.q = skey[4];
+ sk.u = skey[5];
+
+ y = gcry_mpi_snew (gcry_mpi_get_nbits (sk.n));
+
+ if (! (flags & PUBKEY_FLAG_NO_BLINDING))
+ {
+ /* Initialize blinding. */
+
+ /* First, we need a random number r between 0 and n - 1, which
+ is relatively prime to n (i.e. it is neither p nor q). */
+ r = gcry_mpi_snew (gcry_mpi_get_nbits (sk.n));
+ ri = gcry_mpi_snew (gcry_mpi_get_nbits (sk.n));
+
+ gcry_mpi_randomize (r, gcry_mpi_get_nbits (sk.n),
+ GCRY_STRONG_RANDOM);
+ gcry_mpi_mod (r, r, sk.n);
+
+ /* Actually it should be okay to skip the check for equality
+ with either p or q here. */
+
+ /* Calculate inverse of r. */
+ if (! gcry_mpi_invm (ri, r, sk.n))
+ BUG ();
+ }
+
+ if (! (flags & PUBKEY_FLAG_NO_BLINDING))
+ x = rsa_blind (data[0], r, sk.e, sk.n);
+ else
+ x = data[0];
+
+ /* Do the encryption. */
+ secret (y, x, &sk);
+
+ if (! (flags & PUBKEY_FLAG_NO_BLINDING))
+ {
+ /* Undo blinding. */
+ gcry_mpi_t a = gcry_mpi_copy (y);
+
+ gcry_mpi_release (y);
+ y = rsa_unblind (a, ri, sk.n);
+ }
+
+ if (! (flags & PUBKEY_FLAG_NO_BLINDING))
+ {
+ /* Deallocate resources needed for blinding. */
+ gcry_mpi_release (x);
+ gcry_mpi_release (r);
+ gcry_mpi_release (ri);
+ }
+
+ /* Copy out result. */
+ *result = y;
+
+ return GPG_ERR_NO_ERROR;
+}
+
+gcry_err_code_t
+_gcry_rsa_sign (int algo, gcry_mpi_t *resarr, gcry_mpi_t data, gcry_mpi_t *skey)
+{
+ RSA_secret_key sk;
+
+ sk.n = skey[0];
+ sk.e = skey[1];
+ sk.d = skey[2];
+ sk.p = skey[3];
+ sk.q = skey[4];
+ sk.u = skey[5];
+ resarr[0] = mpi_alloc( mpi_get_nlimbs (sk.n));
+ secret (resarr[0], data, &sk);
+
+ return GPG_ERR_NO_ERROR;
+}
+
+gcry_err_code_t
+_gcry_rsa_verify (int algo, gcry_mpi_t hash, gcry_mpi_t *data, gcry_mpi_t *pkey,
+ int (*cmp) (void *opaque, gcry_mpi_t tmp),
+ void *opaquev)
+{
+ RSA_public_key pk;
+ gcry_mpi_t result;
+ gcry_err_code_t rc;
+
+ pk.n = pkey[0];
+ pk.e = pkey[1];
+ result = gcry_mpi_new ( 160 );
+ public( result, data[0], &pk );
+ /*rc = (*cmp)( opaquev, result );*/
+ rc = mpi_cmp (result, hash) ? GPG_ERR_BAD_SIGNATURE : GPG_ERR_NO_ERROR;
+ gcry_mpi_release (result);
+
+ return rc;
+}
+
+
+unsigned int
+_gcry_rsa_get_nbits (int algo, gcry_mpi_t *pkey)
+{
+ return mpi_get_nbits (pkey[0]);
+}
+
+static char *rsa_names[] =
+ {
+ "rsa",
+ "openpgp-rsa",
+ "oid.1.2.840.113549.1.1.1",
+ NULL,
+ };
+
+gcry_pk_spec_t _gcry_pubkey_spec_rsa =
+ {
+ "RSA", rsa_names,
+ "ne", "nedpqu", "a", "s", "n",
+ GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR,
+ _gcry_rsa_generate,
+ _gcry_rsa_check_secret_key,
+ _gcry_rsa_encrypt,
+ _gcry_rsa_decrypt,
+ _gcry_rsa_sign,
+ _gcry_rsa_verify,
+ _gcry_rsa_get_nbits,
+ };